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Abstract
The equations of motion for a relativistic extended object loaded with a
superconducting edge are found in terms of geometrical quantities defined on
the worldsheet. The results are applied to the study of a domain wall bounded by
a superconducting string. Several cases for attaining equilibrium configurations
are discussed.
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(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Superconducting cosmic strings have been widely studied due to its inherent interesting
properties and cosmological consequences [1,2]. A dynamical study for these cosmic objects
says that equilibrium configurations (called vortons or rings) may exist. These objects have
been considered as candidates for explaining the existence of ultra-high-energy cosmic rays [3].
Besides, domain walls can exhibit a superconducting character too. Superconducting domain
walls emerge from supersymmetry [4] and grand unified theories [5]. In addition, domain walls
transform in superconducting membranes [6] in a similar way as in Witten’s superconducting
string [7]. In these objects, the presence of charge can lower the total energy density and they
can be accommodated in standard cosmology [6]. On the other hand, a study of the mechanics
of superconducting membranes from a Hamiltonian point of view has been carried out in [8].

Furthermore, hybrid objects (such as walls bounded by strings, and monopoles connected
by strings) can be formed in an appropriate sequence of phase transitions. For example,
the formation of domain walls bounded by strings is present in the Peccei–Quinn phase
transition [9]. This kind of object has important physical consequences [10]. The dynamics of
relativistic extended objects with a non-null edge (of the Dirac–Nambu–Goto type) have been
studied in [11]. From a different point of view this problem is treated in [12]. It is important to
study how the dynamical properties of superconducting string equilibrium configurations are
modified if they are bounding the domain walls. The domain wall will change this equilibrium
configurations in an unknown way.

In this paper we find the equations that describe the behaviour of a general kind of
compound system (formed by a superconducting membrane and a superconducting edge)
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using the mathematical formalism developed in [13]. In particular we study the dynamical
properties of a superconducting string bounding a domain wall and we show the existence of
an equilibrium configuration.

The paper is organized as follows. In section 2 we consider the mathematical issues
necessary to study these hybrid objects. In section 3 we obtain the fundamental equations
of motion of the system. We focus in section 4 on a discussion about the mechanics of a
superconducting string bounding a domain wall. The main conclusion of the work is presented
in section 5. Finally, the variation of the action of this kind of composite system is developed
explicitly in the appendix.

2. Mathematical background

The embedding of the worldsheet m describing the evolution of the (p − 1)-dimensional
extended object in an M background spacetime of dimension N and metric gµν can be defined
by

xµ = Xµ(ξa) (1)

where xµ are coordinates on M , ξa coordinates on m (a, b = 0, . . . , p − 1) and Xµ the
embedding functions. The tangent p vectors ea = X

µ
,a∂µ form a basis of tangent vectors to m

at each point of m. The metric induced in the worldsheet from the background metric is given
by

γab = g(ea, eb) = Xµ
,aX

ν
,bgµν (2)

where a comma denotes simple partial differentiation with respect to the worldsheet coordinates
ξa . The intrinsic geometry is determined by this metric. Tangential indices are manipulated
with γab and γ ab in the usual way. The ith unit normal to the worldsheet, ni (i, j, . . . =
1, N − p), is defined by

g(ea, n
i) = 0 g(ni, nj ) = δij . (3)

Two of the most important quantities, determining the extrinsic geometry, are the extrinsic
curvature Ki

ab of the worldsheet, defined by

Ki
ab = −g(Daeb, n

i) (4)

where Da = e
µ
a ∇µ, with ∇µ the covariant derivative compatible with gµν , and the extrinsic

twist potential ωij
a , given by

ωij
a = g(Dan

i, nj ) = −ωji
a (5)

related to the covariance under normal frame rotations. We now consider some geometrical
aspects of the worldsheet boundary ∂m. We treat ∂m as a timelike surface of dimension p−1,
described by the embedding in the worldsheet m,

ξa = χa(uA) (6)

where A,B, . . . = 0, 1, . . . p − 2 and uA are coordinates on ∂m. The p − 1 tangent vectors
to the boundary worldsheet are εaA = χa

,A. Besides, in this case we have only one unit normal
vector ηa to ∂m, defined by γabη

aεbA = 0 and γabη
aηb = 1. The metric induced from m by

the embedding χa is

hAB = γabε
a
Aε

b
B. (7)

In this case, the extrinsic geometry is determined only by the extrinsic curvature:

kAB = −γabη
a∇Aε

b
B (8)

where ∇A = εaA∇a , and ∇a is the covariant derivative compatible with γab. Note that in the
case of a hypersurface embedding the extrinsic twist vanishes identically. For a complete study
of this subject see [11].
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3. Relativistic membranes with superconducting boundaries

The total action describing the dynamics of these hybrid objects in the presence of a background
electromagnetic field is given as a sum of two parts corresponding to the membrane and its
boundary

S ≡ S0 + Sb =
∫
m

√−γL0 +
∫
∂m

√−hLb (9)

where L0 = L0(γab, ϕ̄,a, Aa), Lb = Lb(hAB, ϕ,A,AA), γ ≡ det{γab}, h ≡ det{hAB},
Aa = eµa Aµ and AA = εaAAa is the pullback of the external electromagnetic potential Aµ.

Note that, for the sake of simplicity, the worldsheet differential dpξ has been absorbed
into the integral sign. The LagrangiansL0 andLb depend on its own internal fields ϕ̄,a , ϕ,A and
can depend on external fields, such as the electromagnetic external potential. In order to obtain
the equations of motion we will perform a variation of the embedding of Xµ → Xµ + δXµ.
We can expand the displacement with respect to the spacetime basis {ea, ni}

δX = 'aea + 'ini. (10)

Under this displacement the intrinsic metric change as [13]

δXγab = 2Ki
ab'i + ∇a'b + ∇b'a. (11)

We are now in a position to perform the variation of the action. For the membrane the variation
leads to

δXS0 =
∫
m

√−γ

{
1

2
L0γ

abδXγab +
δL0

δγab
δXγab +

δL0

δAa

δXAa

}
(12)

that can be cast in the form

δXS0 =
∫
m

√−γ { 1
2T

abδXγab + J aδXAa}. (13)

The former expression specifies the electromagnetic current Ja and the electromagnetic energy
stress tensor T ab

J a = δL0

δAa

T ab = 2
δL0

δγab
+ L0γ

ab (14)

where we consider that the dynamical equations for the internal fields are satisfied,

∇aJ
a = 0. (15)

Using the results obtained in [13] for the variations of the geometrical quantities of the
worldsheet, we find that the action takes the form (the explicit calculation of the following
variations are given in the appendix)

δXS0 =
∫
m

√−γ {(T abKi
ab + F i

aJ
a)'i + (−∇aT

ab + FbaJa)'b

+∇a('jA
jJ a) + ∇a(T

ab'b + J aAb'b)} (16)

where Fa
i = e

µ
a n

iνFµν , Fab = e
µ
a e

ν
bFµν and Fµν = ∂µAν −∂νAµ is the electromagnetic tensor

field. The tangential variation over the worldsheet yields as a result

∇aT
ab = FbaJa. (17)

This equation is satisfied identically as a consequence of the internal equations of motion (for
the internal fields) of the membrane. The total divergences will be relevant for the motion of
the boundary.
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Performing now the variation of the action corresponding to the boundary, we obtain

δXSb =
∫
∂m

(√−hδXLb + δX
√−hLb

)
(18)

=
∫
∂m

√−h

{
1

2
Lbh

ABδXhAB +
δLb

δhAB
δXhAB +

δLb

δAA

δXAA

}
(19)

=
∫
∂m

√−h{ 1
2 t

ABδXhAB + JAδXAA}. (20)

In a similar way, the last expression specifies the momentum–energy tensor and the
electromagnetic surface current over the boundary:

jA = δLb

δAA

tAB = 2
δLb

δhAB
+ Lbh

AB. (21)

This variation can be calculated if we use again the results in [13], and after tedious algebra
(see appendix) we obtain the variation of the action corresponding to the boundary. The total
variation is obtained when we combine the results (13) and (20):

δXS =
∫
m

√−γ {(T abKi
ab + F i

aJ
a)'i}

+
∫
∂m

√−h{(tABKi
AB + jbHabF i

a − Ai(Hab∇ajb − ηaJa))'i

+(−tdck
dca + jbHbcFc

a − Aa(Hbc∇bjc − ηbJb)

−(HacHbd∇btdc − T abηb))'a} (22)

where Hab = hABχa
Aχ

b
B . In order to obtain the equations of motion, we note that the coefficients

of the deformation fields have to be zero. So, we have three equations of motions that describe
the dynamics of the extended object with superconducting edges:

T abKi
ab = Fa

iJ a (23)

tABKi
AB = Fa

ijbHab (24)

tabkab = Fc
aηajbHbc + T abηaηb (25)

along with the conservation laws

Hab∇ajb = ηaJa (26)

HacHbd∇btdc = Ha
cT

bcηb + jbHbcHa
dF

d
c . (27)

The first equation describes the motion of the membrane. The second one is a kind of
boundary condition of the first equation due to the boundary, and it is a restrictive condition
over the motion of the membrane.

The equation (25) specifies the motion of the boundary, in which the effect of the membrane
over the boundary has been taken into account through the orthogonal projection to the
boundary of the stress energy tensor. The equation (27) is a consequence of the equations
of motion of the internal fields (equations (15), (26)) and for this reason we do not need to
resolve it, so the problem of the mechanics of this superconducting hybrid extended object is
reduced to resolving the set of equations (15), (23)–(26).

4. Domain wall bounded by a superconducting string

Consider a system of a flat domain wall described by a Dirac–Nambu–Goto action bounded
by a superconducting circular cosmic string in a four-dimensional background spacetime
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without external fields. In this case, from equations (23)–(26) we have to resolve the following
equations (equation (15) is trivially satisfied since Ja = 0):

Ki = 0 (28)

tABKi
AB = 0 (29)

kABtAB = ∓µ0 (30)

Hab∇ajb = 0 (31)

where, in equation (30), the plus sign corresponds to the case in which the membrane has
a hole whose boundary is the string itself, and the minus sign when the membrane has as
boundary the superconducting string. Now, the dependence on Lb = Lb(hAB, ϕ,A,AA) is
through Lb = Lb(ω), where ω = hAB(ϕ,A + AA)(ϕ,B + AB).

Considering the case in which there are no external fields, AA = 0, and the metric is flat

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) (32)

we obtain the flat domain wall if we put θ = π/2

ds2 = −dt2 + dr2 + r2 dφ2 (33)

and the superconducting circular string through the embedding

t = Eτ r = r(τ ) φ = σ (34)

where E is a constant with dimension of length−1 in natural units; τ and σ are the string
worldsheet coordinates. For the flat domain wall the extrinsic curvature identically vanishes,
Kab = 0, and equations (28) and (29) are trivially satisfied; it remains to resolve equations (30)
and (31).

Now, we consider the situation in which the superconducting string has charge and current

ϕ = ϕ(τ, σ ) = ϕ1(τ ) + Nσ (35)

where N is the winding number.
The equation for the internal field ϕ is equivalent to current conservation (31),

ϕ̇ = 6
√
E2 − ṙ2

2r(dLb/dω)
(36)

where 6 is a dimensionless integration constant. Then,

ω = − 62

4r2(dLb/dω)2
+
N2

r2
. (37)

In order to calculate the extrinsic curvature we need to know the vectors tangent and normal
to the worldsheet.

For our system these vectors are

εa0 = (E, ṙ, 0) (38)

εa1 = (0, 0, 1) (39)

η = 1/
√
E2 − ṙ2(ṙ, E, 0). (40)

The non-vanishing components of the extrinsic curvature kAB = −g(∇AεB, η) are

k00 = r̈E

(E2 − ṙ2)5/2
(41)

k11 = − E

r3(E2 − ṙ2)1/2
(42)
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in such a way that the only equation of motion that we need to resolve is

Lbk − 2
dLb

dω
k00ϕ,0ϕ,0 − 2

dLb

dω
k11ϕ,1ϕ,1 = ∓µ0. (43)

Explicitly,

Lb

(
− r̈E

(E2 − ṙ2)3/2
− E

r(E2 − ṙ2)1/2

)
− r̈E62

(E2 − ṙ2)3/22r2(dLb/dω)

+2
dLb

dω

EN2

r3(E2 − ṙ2)1/2
= ∓µ0 (44)

or, in an equivalent form,

r̈

(E2 − ṙ2)3/2

(
Lb +

62

2r2 dLb/dω

)
+

Lb

r(E2 − ṙ2)1/2
− 2

dLb

dω

N2

r3(E2 − ṙ2)1/2
= ±µ0

E
. (45)

Finally, the last equation can be written as

d

dτ

(
r(Lb + 62

2r2 dLb/dω )

(E2 − ṙ2)1/2

)
= ±ṙr

µ0

E
= ± d

dτ

(
µ0r

2

2E

)
(46)

and we obtain a first integral

ṙ2 = E2 −
r2
(
Lb + 62

2r2 dLb/dω

)2

(
ET

E
∓ µ0r2

2E

)2 (47)

where ET is a constant related to the total energy. When µ0 = 0 we recover the equation of
motion for superconducting circular strings [14, 15].

The choice of the sign depends on whether the membrane has holes whose boundary is the
string itself or the membrane has as boundary the string. So, we have shown that the solution
to this problem reduces to a one-dimensional effective potential for the radius of the string.

One of the better studied models is Witten’s one [7] described by the following Lagrangian:
Lb = −(µb + ω/2). The effective potential in this model is V ∗ = E2(N2+62)µb

2E2
T

V (a, x), which

is a function of the dimensionless parameter x = (
2µb

N2+62 )
1/2r and a = (N2+62)µ0

2ET µb
. Since both

x and a depend on the wall and string properties, we have plotted V (a, x) in figure 1.
We see that the potential exhibits a minimum; i.e. there exists an equilibrium configuration

for this hybrid object. We also note that for increasing values of the parameter a (meaning
greater values for µ0, keeping all other parameters fixed) the equilibrium configuration occurs
for decreasing string radius, due to the tension on the wall, which is physically expected.
However, Coulomb and centrifugal effects present in the string compensate the tension on the
wall (and on the string), avoiding collapsing to a charge point.

On the other hand, if we consider the case in which the superconducting string is the
boundary of a hole in the domain wall, we have to choose the plus sign in the expression for
the one-dimensional potential. This potential is plotted in figure 2.

In this case we see that the potential lacks a minimum and therefore it does not possess
an equilibrium configuration. According to figure 2, the hole grows indefinitely. This is so,
because of the tension of the wall and the Coulomb and centrifugal repulsion overcome the
tension of the string. Although the electromagnetic and centrifugal forces of the string decrease
as the radius of the hole grows, the tension on the wall is responsible for this behaviour.

We have also studied Nielsen’s model [16] and found that the effective potential behaves
qualitatively as in Witten’s case.
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Figure 1. Effective potential for a superconducting circular string bounding a flat domain wall.
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Figure 2. Effective potential for a superconducting circular string as the boundary of a hole in a
flat domain wall.

5. Conclusion

In this paper we have obtained from a geometrical point of view the equations of motion for a
hybrid superconducting extended object. Specifically, we have tackled a composite system of
a flat domain wall bounded by a superconducting circular string. For this particular case, our
problem is expressed by means of a one-dimensional effective potential and we have shown that
there exists an equilibrium configuration. Such a solution might be considered as a candidate
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to explain the ultra-high-energy cosmic rays [10]; this issue is under current investigation.
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Appendix

In this appendix the computation of the total variation of the composite action

S = S0 + Sb =
∫
m

√−γL0 +
∫
∂m

√−hLb (48)

is developed explicitly.
We can perform the variation of the action in terms of the spacetime basis {ea, ni}.

This variation can be expressed as an expansion of the tangential and normal deformation
components

δX = 'aea + 'ini. (49)

In order to obtain the equations of motion of this composite system, we will use the following
results for the variation of the important quantities [13]:

δXe
ν
a = {∇a'

c + Kci
a 'i}eνc + {∇̃a'j − Kacj'

c}nνj (50)

δXγab = 2Ki
ab'i + ∇a'b + ∇b'a (51)

δXγ
ab = −γ acγ bdδXγcd (52)

δXγ = γ γ abδXγab (53)

where ∇̃a is the covariant derivative associated with the extrinsic twist potential ω
ij
a .

Additionally, the variation of the external vector potential can be written in terms of the
tangential and normal deformation as

δXAν = ('in
iµ + 'aeµa )∇µAν. (54)

Applying the former results to our variation procedure we obtain for the membrane

δXS0 =
∫
m

√−γ {T ab(Ki
ab'i + ∇a'b) + J aAc∇a'

c + Kci
a J

aAc'i

+J aAj ∇̃a'j − J aKacj'
cAj + J aeµa 'in

iν∇νAµ + J aeµa '
beνb∇νAµ}. (55)

Inserting the following expression in the last equation

∇̃aA
i = Ki

abA
b + eρa n

iµ∇ρAµ (56)

we find that the variation takes the form

δXS0 =
∫
m

√−γ {T abKi
ab'i + ∇a('jA

jJ a) − J aeρa'in
iµ∇ρAµ

+J a'ie
µ
a n

νi∇νAµ + T ab∇a'b + ∇a('bJ
aAb)

−J a'b∇aAb − J aKacjA
j'c + J aeµa '

beνb∇νAµ}. (57)

Working out the last expression we arrive at

δXS0 =
∫
m

√−γ {(T abKi
ab + F i

aJ
a)'i + (−∇aT

ab + FbaJa)'b

+∇a('jA
jJ a) + ∇a(T

ab'b + J aAb'b)}. (58)
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The vanishing of the tangential part gives, as a result, the relation

∇aT
ab = FbaJa (59)

which is identically fulfilled as a consequence of the equation of motion for the internal field.
The variation corresponding to the boundary is connected to the variation of the membrane
itself via

δXhAB = χa
Aχ

b
BδXγab. (60)

We need to define the following relation, which is a kind of projection over the boundary:

Hab = hABχa
Aχ

b
B. (61)

Performing the variation corresponding to the boundary, we obtain

δXSb =
∫
∂m

√−h{tABχa
Aχ

b
B(K

i
ab'i + ∇a'b) + HabjbAc∇a'

c

+Kci
a HabjbAc'i + HabjbA

j∇a'j − jbHabKacj'
cAj

+Habjbe
µ
a 'in

iν∇νAµ + Habjbe
µ
a '

ceνc∇νAµ}. (62)

Taking into account the following relations:

tABχa
Aχ

b
B∇a'b = HacHbd tcd∇a'b

= DA(ε
dAHactcd'a) + kηdHactdc'a − 'bHbd∇a(Hactdc)

= DA(ε
dAHactcd'a) + kηdHactdc'a − 'atdck

dac

−'atdck
dca − 'bHbdHac∇atdc (63)

and

HabjbAc∇a'
c = Hab∇a('

cjbAc) − Ac'
cHab∇ajb − Hab'cjb∇aAc

= DA(ε
bAjb'

cAc) + kηaja'
bAb − Ac'

cHab∇ajb − Hab'cjb∇aAc

HabjbA
i∇̃a'i = Hab∇a('ijbA

i) − Ai'iHab∇ajb − Hab'ijb∇̃aA
i

(64)

with

Hab∇a('ijbA
i) = DA('ijbA

iεbA) + kηaAi'ija

where kAB = kcabε
a
Aε

b
Bηc, k = hABkAB and DA is the covariant derivative compatible with

hAB , we can write the variation of the boundary action as

δXSb =
∫
∂m

√−h{tABkiAB'i + DA(ε
dAHactcd'a) + kηdHactdc'a

−'atdck
dac − 'atdck

dca − 'aHbdHac∇btdc + DA(ε
bAjb'

cAc)

+kηaja'
bAb − Ac'

cHab∇ajb − Hab'cjb∇aAc + jbHabKci
a Ac'i

+DA('ijbA
iεbA) + kηajaA

i'i − Ai'iHab∇ajb − Hab'ijbn
iµDaAµ

−Hab'ijbK
i
acA

c − jbHabAiKaci'
c + Habjbe

µ
a 'in

iν∇νAµ

+Habjbe
µ
a '

ceνc∇νAµ}. (65)

Considering that the total divergence terms do not contribute to the equations of motion, that

ηaj
a = 0

ηdtdc = 0
tdck

dac = 0
(66)

expressing that the current j is on the boundary only, tab is the boundary stress energy tensor
and the relation

eµa DcAµ = ∇cAa + Ki
caAi (67)
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we have that the total variation simplifies to

δXS =
∫
m

√−γ {(T abKi
ab + F i

aJ
a)'i}

+
∫
∂m

√−h{(tABKi
AB + jbHabF i

a − Ai(Hab∇ajb − ηaJa))'i

+(−tdck
dca + jbHbcFc

a − Aa(Hbc∇bjc − ηbJb)

−(HacHbd∇btdc − T abηb))'a}. (68)

Finally, the equations of motion describing the dynamics of the extended objects with charge
boundaries are

T abKi
ab = Fa

iJ a (69)

tABKi
AB = Fa

ijbHab (70)

tabkab = Fc
aηajbHbc + T abηaηb (71)

along with the conservation laws

Hab∇ajb = ηaJa (72)

HacHbd∇btdc = Ha
cT

bcηb + jbHbcHa
dFc

d . (73)

However, the last relation is a consequence of the equations that satisfy the internal fields over
the boundary, i.e. it is a consequence of the equations (72) and (15); so we do not need this
relation to resolve our problem.
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